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We study the optical absorption at graphene edges in a perpendicular magnetic field and the subsequent charge
carrier multiplication via inelastic Auger scattering. For the latter, we identify exact and approximate selection
rules and give estimates for the generated edge current. This permits an understanding of the experimentally
observed photoresponse in suspended graphene.
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I. INTRODUCTION

Graphene offers a large mean free path, a high charge
carrier mobility [1–3], and a broad absorption bandwidth [4],
which makes it a promising candidate for optoelectronic ap-
plications [5–7]. In particular, the linear energy-momentum
relation at low energies as well as the absence of a band gap
permits the absorption in the optical and infrared regime.

Photodetectors and graphene-based solar cells require the
generation of a directed photocurrent [8–12]. As proposed
in [13], a directed charge current can be generated when
photons are absorbed in the vicinity of a graphene edge
which is subject to a perpendicular magnetic field [14].
This effect was experimentally confirmed by measuring the
magneto-optical response of a suspended graphene layer
[15]. Surprisingly, it was found that the induced edge cur-
rent adopts much larger values than naively expected from
the photon-absorption probability. More specifically, a seven-
fold larger current was observed than naively expected from
the absorption probability of graphene monolayers, which is
about 2.3% [16–18]. This strong enhancement was dedicated
to secondary electron-hole generation via Auger scattering
processes [19–22]. With this reasoning, the giant magneto-
photoelectric current can be understood within a two-step
process. First, photons are absorbed into the dispersive edge
modes and generate electron-hole pairs with energies in the
eV regime. The magnetic field bends the electrons and holes
in antipodal directions, which induces a directed current. Sub-
sequently, impact ionization at the graphene edge generates
further charge carriers which then also contribute to the over-
all current.

The response of graphene to an external electromagnetic
field can be characterized by means of the optical conduc-
tivity. So far, a large number of experimental and theoretical
studies have been devoted to the study of the optical re-
sponse of monolayer or multilayer graphene sheets [4,23–28].
However, most of the research has focused on translationally
invariant settings. As our work is related to the generation of a
directed charge current which requires the breaking of charge,
parity, and time-reversal symmetry, we are interested in the

spatial dependence of the photo absorption of graphene edges
exposed to a perpendicular magnetic field. It is well known
that the longitudinal conductivity of graphene has pronounced
peaks for frequencies which are in resonance with transitions
between flat bulk Landau levels [23,24]. These peaks are
related to nondispersive bulk excitations and do not contribute
to the directed current. Here we will focus on the absorp-
tion into the dispersive edge modes by applying the Kubo
formalism.

In addition, we extend our considerations to include sec-
ondary effects, namely, electron-hole pair creation due to
Auger scattering at the graphene edges. It is well known
that carrier multiplication within the bulk is suppressed as
the phase space for collinear scattering vanishes [22,29–31].
However, the breaking of translational invariance at the
graphene edge opens up a finite volume of phase space in
which carrier multiplication can take place. For low-energy
excitations near the Dirac points, it is possible to describe the
electronic excitations by means of an effective spinor field
[3]. Employing their analytical properties, we shall discuss
various selection rules for the Auger scattering rates, which
are calculated via time-dependent perturbation theory.

The bare photoeffect in graphene can already be under-
stood in the framework of noninteracting Dirac electrons in
two dimensions [16,17]. Therefore, we briefly recapitulate the
effective Dirac equations of single-layer graphene in Sec. II.
The details of primary electron-hole generation at graphene
edges will be discussed in Sec. III for two different ge-
ometries, namely, a graphene fold and a zigzag edge. The
subsequent charge carrier multiplication due to impact ion-
ization is then analyzed in Sec. IV. We give estimates for
the charge carrier multiplication rates and discuss various
selection rules for the decay channels.

II. DIRAC SPINORS

The carbon atoms of graphene are arranged in a hexagonal
structure which can be seen as a triangular lattice with two
sites in a unit cell. The electronic wave function is localized
on two sublattices, which we denote with A and B. In a
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tight-binding model, the stationary Schrödinger equation can
be written as [32]

−γ0

∑
l

ψB(rA − τl ) = EψA(rA), (1)

−γ0

∑
l

ψA(rB + τl ) = EψB(rB), (2)

where γ0 is the transfer integral between neighboring car-
bon atoms and the primitive translation vectors are given
by τ1 = a0(0, 1/

√
3), τ2 = a0[−1/2,−1/(2

√
3)], and τ3 =

a0(1/2,−1/2
√

3), with a0 ≈ 2.46 Å the lattice constant. The
coordinate system was chosen such that the graphene sheet
being cut parallel to the x axis has a zigzag edge. The energy
dispersion vanishes linearly around the so-called Dirac points
K = 2π

a0
(1/3, 1/

√
3) and K′ = 2π

a0
(−1/3, 1/

√
3). Since we

want to describe excitations around the Fermi level E = 0, we
choose the following ansatz for the electron wave function:

�A(rA) = eiK·rAψK (rA) + eiK′ ·rAψK ′
(rA), (3)

�B(rA) = ei 2π
3 eiK·rBψK (rB) + ei 2π

3 eiK′ ·rBψK ′
(rB), (4)

where the phases eiK·rA,B and eiK′ ·rA,B are highly oscillat-
ing and ψK

A,B as well as ψK ′
A,B are slowly varying enve-

lope functions. The envelope functions can be grouped in
two-component spinors, i.e., �K = [ψK

A , ψK
B ]T and �K ′ =

[ψK ′
A , ψK ′

B ]T , which satisfy two-component Dirac equa-
tions [33],

vF

(
0 −p̂x + i p̂y

−p̂x − i p̂y 0

)
�K = E�K (5)

and

vF

(
0 p̂x + i p̂y

p̂x − i p̂y 0

)
�K ′ = E�K ′

. (6)

We stress that the spinor components refer to the graphene
sublattices and not to the intrinsic spin of the electronic
excitations. The Fermi velocity is related to the lattice
spacing and the overlap integral via vF = a0γ0

√
3/2. The

Dirac equations (5) and (6) have an electron-hole symmetry;
therefore, each positive-energy spinor �

p

E = [ψA, ψB]T has
as a counterpart a negative-energy spinor �

h

E = σz�
p

E . For
an infinitely extended graphene sheet, one finds the linear
energy-momentum relation E = ±vF |p|.

Strictly speaking, the description of electronic excitations
in terms of effective Dirac spinors is only valid for energies
in the vicinity of the Dirac point. Here we shall consider elec-
tronic excitations in the eV range, which is comparable to the
electron hopping rate in graphene (≈ 2.8 eV). Nevertheless,
we shall apply the low-energy approximation since the exact
dispersion relation of graphene for an excitation energy of
0.7 eV shows only deviations of, at most, 6% from the linear
dispersion [3].

Moreover, the continuum description in terms of spinor
fields can be justified because the lattice constant of graphene
is 2.46 Å, which is much smaller than the typical length
scales associated with the magnetic field strengths considered
here. In particular, for a field strength of 5 T, the magnetic
length is 11 nm and the cyclotron radius, rcyc = E/(qvF B), for
electronic excitations with 0.7 eV is about 120 nm. Note that

these parameters are related to the experimental realization
which was presented in [15].

III. OPTICAL CONDUCTIVITY

The conductivity of bare graphene has, to leading order, the
frequency-independent value σ = παQED ≈ 0.023 [16–18].
The application of an external magnetic field has, as a con-
sequence, a strong enhancement of the optical absorption in
the graphene bulk due to the peaked charge carrier densities
around the Landau levels [14,23,24]. One might argue that
this enhancement alone could account for the large observed
current. However, the bulk modes will not contribute to the
directed edge current, which motivates the investigation of the
absorption into the dispersive edge modes in geometries with
broken translational symmetry [34].

The optical response of graphene which is subject to an
external electric field Ej (r, t ) = Ej (r,	)e−i	t , i.e., a coherent
laser field, can be calculated perturbatively from the Kubo
formula [35]. The conductivity tensor σi j links the external
field to the induced current,

Ji(r,	) =
∑

j

∫
d2r′σi j (r, r′,	)Ej (r′,	), (7)

and can be expressed as a current-current correlation function.
In order to evaluate the correlation function, it is convenient
to employ thermal Green functions together with a subsequent
analytical continuation, σi j (r, r′,	) = σ T

i j (r, r′, i	l → 	 +
iδ). Explicitly, the correlation function of the thermal Dirac
currents, Ĵi(r, τ ) = −qvF

ˆ̄�(r, τ )γ i�̂(r, τ ), has the form

σ T
i j (r, r′, i	l ) = − i

	

∫ β

0
ei	l τ 〈Tτ Ĵi(r, τ )Ĵ j (r′, 0)〉. (8)

The Dirac spinor �̂ contains the positive- and negative-energy
modes at both Dirac points. From Eqs. (5) and (6), we find
the representation of the Dirac matrices, γ 0 = diag(σz, σz ),
γ 1 = diag(−iσy, iσy), and γ 2 = diag(iσx, iσx ). Finally, the
correlator (8) can be expressed in terms of thermal Green
functions G(r, r′, τ ) = −�(τ )〈�̂(r, τ ) ˆ̄�(r′)〉,

σ T
i j (r, r′, i	l ) = i(qvF )2

	

∫ β

0
ei	l τ Tr{γ iG(r, r′, τ )γ j

× G(r′, r,−τ )}, (9)

which then allows the evaluation in terms of Matsubara sums
[36].

We assume that the wavelength of the electric field is
much larger than the cyclotron radius of an electron or hole
excitation and approximate Ej (r,	) ≈ Ej (	). We can apply
this approximation since electron-hole excitations in the eV
range are generated by photons with a wavelength of about
one micrometer, which are much larger than the cyclotron
radius of 120 nm.

The diagonal components of the correlator then determine
the conductivities for the polarizations of the electrical field
perpendicular and parallel to the graphene edge,

σ⊥,‖(r,	) = Re lim
δ→0

∫
d2r′σ T

⊥,‖(r, r′,	 + iδ). (10)
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The evaluation of this expression requires the explicit knowl-
edge of the Dirac spinor, which we shall evaluate in the
following for the graphene fold and the zigzag edge.

A. Graphene fold

We consider a graphene fold along the y axis with a
magnetic field pointing in the z direction. The corresponding
vector potential is minimally coupled to the Dirac equations
(5) and (6) via p̂y → p̂y + qA(x), where q denotes the electric
charge of the electron and A(x) is the vector potential of the
external magnetic field. The parallel momentum k is preserved
due to the translation invariance along the y direction. As a
consequence of the magnetic field, the excitation energies of
electrons and holes can be characterized by Landau bands.
Altogether, we can decompose the Dirac spinor into positive-
energy (p) particle modes and negative-energy (h) hole modes
in the vicinity of both Dirac points according to

�̂(r, t ) = 1

2π
√

2

∫
dk
∑
m>0

eiky

×
[{(

�
p,K
k,m (x)

0

)
âK

m,k +
(

0

�
p,K ′
k,m (x)

)
âK ′

m,k

}
e−iEm,kt

+
{(

�
h,K
k,m (x)

0

)
b̂†K

m,k +
(

0

�
h,K ′
k,m (x)

)
b̂†K ′

m,k

}
e+iEm,kt

]
,

(11)

where the degeneracy of the energy bands with respect to the
Dirac points was employed. From Eqs. (5) and (6), we find
that the spinor components of the Dirac points are related
by ψK ′

A,k,m = ψK
B,k,m and ψK ′

B,k,m = −ψK
A,k,m. Furthermore, the

eigenvalue equations (5) and (6) can be decoupled, which
reduces the problem to the solution of the one-dimensional
Schrödinger equation v2

F [−∂2
x + V (x)]ψK

A,k,m = E2
m,kψ

K
A,k,m,

with the effective potential V (x) = [k + q A(x)]2 + q ∂xA(x).
Following the discussion in [13], a symmetric vector

potential A(−x) = A(x) gives rise to an additional symme-
try which relates the spinor components via ψK

B,k,m(x) =
−iPk,mψK

A,k,m(−x), where Pk,m = (−1)m+1 is called the pseu-
doparity. The lowest Landau band is labeled with m = 1. As a
particular realization of a graphene fold with curvature radius
R in a constant magnetic field, we take the vector potential to
be of the form

A(x) =
{

B0R
(
1 − cos x

R

)
if |x| � πR

2

B0R
(∣∣ x

R

∣∣− π
2 + 1

)
if |x| > πR

2 .
(12)

For the sake of simplicity, we choose in the following the
curvature radius to be equal to the magnetic length �B0 =
1/

√
qB0. For a magnetic field of B0 = 5 T, this would cor-

respond to a curvature radius of R = 11 nm [37,38]. Note
that graphene foldings with comparable curvature radius have
been realized experimentally [39]. For a folding radius which
is much smaller than the magnetic length, the setting is similar
to a sharp edge such as the zigzag boundary; see below.
In contrast, for a smooth bending with R 
 �B0 , the charge
separation is less efficient.

FIG. 1. Electron-hole-symmetric energy spectrum for a graphene
fold in a magnetic field. The bulk modes have a flat dispersion,
whereas the edge modes have |dE/dk| � vF . The spectrum is de-
generate with respect to the Dirac points K and K ′. The energy bands
have alternating pseudoparity, which is of relevance for the optical
conductivity; see, also [13].

The eigensystem of the effective Schrödinger equation can
be easily evaluated numerically; see Fig. 1. The electron-hole
symmetry of the system is reflected in the eigenspectrum since
for each electron state with positive energy Em,k , a hole state
exists with energy E−m,k = −Em,k . For large positive transver-
sal momenta, the energy bands are dispersive with the slope
given by the Fermi velocity. In a semiclassical picture, the cor-
responding wave functions are skipping orbits of electron and
hole excitations along the graphene edge. As discussed above,
the system exhibits an additional symmetry which gives rise
to a pseudoparity. For large negative values of the transversal
momenta k, pairs of bands with opposite pseudoparity become
quasidegenerate; see Fig. 1. The corresponding states are lo-
calized inside the graphene bulk.

We shall give analytical approximations for the eigenfunc-
tions and energy bands which are relevant for our discussion
in Sec. IV A. For large and positive k, the effective potential
reads V (x) ≈ k2 + x2k/(�3

B0
) + x/�3

B0
, and hence the eigen-

functions are boundary modes and can be expressed in terms
of the harmonic-oscillator eigenfunctions,

ψK
A,k,m(x) ≈ φm−1[(k�B0 )1/4x/�B0 ], m = 1, 2, . . . . (13)

The corresponding energy bands are then

Em,k ≈ vF

√
2
√

k�B0 (m − 1/2)/�2
B0

+ k2. (14)

Asymptotically, the bands have a linear dispersion ∼vF k with
an offset depending on the particular Landau band.

For large but negative k, the effective potential takes the
form V (x) ≈ [k + |x|/�2

B0
+ (1 − π/2)/�B0 ]2 + sign(x)/�2

B0
.

The corresponding eigenfunctions are dispersionless bulk
modes which will not contribute to the edge current. They can
be well approximated by harmonic-oscillator eigenfunctions
φn. For the states of positive pseudoparity, we have

ψK
A,k,1(x) = φ0

(
x

�B0

− �B0 k + π

2
− 1

)
, (15)

ψK
A,k,2n+1(x) = 1√

2

[
φn+1

(
x

�B0

− �B0 k + π

2
− 1

)

− φn

(
− x

�B0

− �B0 k + π

2
− 1

)]
, (16)
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with the dispersionless Landau energies E2n+1 = vF

√
2n/�B0

for n = 0, 1, and so on. Similarly, we find, for the states of
negative pseudoparity,

ψK
A,k,2n(x) = 1√

2

[
φn+1

(
x

�B0

− �B0 k + π

2
− 1

)

+ φn

(
− x

�B0

− �B0 k + π

2
− 1

)]
, (17)

and E2n = vF

√
2n/�B0 where n = 1, 2, and so on. To each

Landau level with n > 0, we have two states with opposite
pseudoparity which are quasidegenerate for sufficiently large
negative k. It is noteworthy that for a superposition ψ̃K

A,k of
two quasidegenerate states with energies Em, one can employ
the Dirac equation to construct the projection onto a state with
definite pseudoparity,

(−1)m+1vF

Em,k
{∂x + [k + qA(x)]}ψ̃K

A,k (−x)

+ ψ̃K
A,k (x) ∝ ψK

A,k,m(x). (18)

This turns out to be a rather useful property for the evaluation
of the Auger matrix elements in Sec. IV.

As will be discussed in Sec. IV A, dispersive modes in
the vicinity of the graphene edge with energies |k�B0 | � 1
are of particular relevance for the charge current enhance-
ment. In this range, the effective potential adopts the quartic
form V (x) ≈ [k + x2/(2�3

B0
)]2 + x/�3

B0
. Although the eigen-

functions cannot be given in analytical form, a reasonable
approximation for the ground-state wave function can be ob-
tained from a Gaussian variational ansatz. We find

ψK
A,k,1(x) =

(
a

π

)1/4

exp

{
− a

2�B0

(x − x0)2

}
, (19)

with a = 1.09 and x0 = −0.58�B0 + 0.47k/�2
B0

. The corre-
sponding Landau band is dispersive and can be approximated
by E1,k ≈ vF (0.62/�B0 + 0.65k); cf. Fig. 1. Although the en-
ergy of these modes is somewhat smaller than vF k, these
modes are of particular relevance for the dominating decay
channels of the inelastic Auger processes.

In terms of the eigenfunctions, one can evaluate the Green
functions and subsequently the optical conductivities (10).
Employing the electron-hole symmetry and the pseudopar-
ity, we obtain, at zero temperature, for each spin degree of
freedom,

σ⊥,‖(x,	) = (qvF )2

4	

∫
dk

∞∑
m,l=1

δ(	 − Em,k − El,k )

× [1 + λ⊥,‖(−1)l+m]
∫

dx′ψK
A,k,m(−x′)

× ψK
A,k,l (x

′)ψK
A,k,m(−x)ψK

A,k,l (x) + (K → K ′).

(20)

Here we have λ⊥ = 1 (λ‖ = −1) for the conductance per-
pendicular (parallel) to the fold. We infer from (20) that the
conductivity perpendicular to the fold involves only transi-
tions between states of equal pseudoparity and the states with
opposite pseudoparity define the conductivity parallel to the

FIG. 2. Absorption probability into the boundary modes for pho-
tons with polarization perpendicular and parallel to the fold. The
values do not exceed the absorption of free graphene, gfree = πα.
The absorption probability vanishes when the distance between the
absorbed photon and the edge exceeds the classical cyclotron radius
of the charge carriers.

edge. The absorption probability g is the ratio of absorbed
energy flux, Wabs =∑i JiEi, and incident energy flux, Winc =∑

i EiEi/(4π ). Summing over the spin degrees of freedom
gives then the relation between conductivity and absorption
probability, g⊥,‖(x,	) = 8πσ⊥,‖(x,	).

The polarization- and distance-dependent absorption prob-
ability into the dispersive edge channels is depicted in Fig. 2.
We choose the photon energy to be 	 = 17vF /�B0 at a mag-
netic field strength of B = 5T , which corresponds to a photon
energy of 	 = 1 eV. The photon energy 	 was selected to
be off resonant to the bulk Landau levels such that in the
following only the absorption into the dispersive edge modes
is of importance. The absorption of photons into bulk modes
is not relevant for the boundary current as the generated
charge carriers do not contribute to the edge current. There the
longitudinal conductivity is peaked around photon energies
which are resonant with the spacings of the bulk Landau
levels. The height of the peaks is then only limited by the
finite scattering length in graphene; see, also [23,24]. From
semiclassics, we would expect that a generated electron-hole
pair propagates on circular trajectories with radius rcyc =
(	/2)�2

B0
/vF = 8.5�B0 . Keeping this in mind, we can interpret

the qualitative behavior of the g⊥ and g‖. For a photon which
is polarized perpendicular to the fold, the transition matrix
elements are proportional to the momentum component k‖,

i.e., �̄Eγ 1�−E ∝ k‖/
√

k2
‖ + k2

⊥. Thus, as shown in the left
panel of Fig. 3, the charge carriers tend to propagate par-
allel to the fold before the magnetic field forces them on
circular trajectories. As a consequence, many of the trajec-
tories will intersect with the graphene fold if the electron-hole
pair is generated at a distance x � 2rcyc. This explains the
rather sudden increase of g⊥(x) in Fig. 2. In contrast, an
absorbed photon that is polarized parallel to the fold is likely
to generate electron-hole pairs propagating perpendicular to
the fold before their trajectories are bent by the magnetic field,
�̄Eγ 2�−E ∝ k⊥/

√
k2
‖ + k2

⊥. From the right panel in Fig. 3, we
infer that it is rather unlikely that charge carriers are reflected
from the fold if they are generated at a distance x � 2rcyc.
This, in turn, explains the gradual increase of g‖(x) towards
the fold in Fig. 2.
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FIG. 3. Left side: Perpendicular polarized photons generate
electron-hole pairs which are propagating on circular trajectories.
Most likely is the propagation on the solid circle, whereas the trajec-
tories of the dashed and dotted circles are less probable. We conclude
that for this polarization, most of the generated electron-hole pairs
will be reflected at the graphene edge for distances � 2rcyc; cf. g⊥
in Fig. 2. Right side: The same argument shows that for parallel
polarized photons which are absorbed at a distance ∼2rcyc from the
edge, the reflection of the generated charge carriers at the edge is
unlikely. A significant absorption can only be expected when the
photon is absorbed at a distance ∼rcyc to the edge, which explains
the gradual increase of g‖ in Fig. 2.

The spatial oscillations of g⊥ occur independently of the
respective realization of the graphene edge and are discussed
in Sec. III C.

B. Zigzag boundary

As noted before, the coordinate system for the tight-
binding equations (1) and (2) was selected such that a zigzag
boundary is parallel to the x axis. Therefore, we take the
nonvanishing component of the vector potential to be in
the x direction, Ax(y) = −B0y. As in the fold geometry, the
two Dirac points can be treated separately. After decoupling
the Dirac equations (5) and (6), one obtains the effective
Schrödinger equations[−∂2

y + (k − q B0y)2 + qB0
]
ψK

A,k,m = E2
m,k

v2
F

ψK
A,k,m (21)

FIG. 4. Energy bands for a graphene sheet with zigzag edge in
a magnetic field; see, also [42]. The dotted curves correspond to the
energy bands for the modes in the vicinity of the K ′ point, whereas
the energy bands for the second Dirac point K are represented by
solid lines. The boundary condition induces a zero-energy mode
at K .

and

[−∂2
y + (k − q B0y)2 − qB0

]
ψK ′

A,k,m = E ′2
m,k

v2
F

ψK ′
A,k,m. (22)

We choose the graphene sheet to be terminated at the A sub-
lattice, which implies the boundary condition ψK

A,k,m(y = 0) =
ψK ′

A,k,m(y = 0) = 0. The energy bands are shown in Fig. 4 and
the corresponding eigenfunctions can be expressed in terms
of parabolic cylinder functions [40,41]. As can be seen from
the energy spectrum, the degeneracy of the two Dirac points
is lifted due to the boundary condition. The asymptotics of the
energy bands for large positive and large negative transversal
momenta coincides with the spectrum of the graphene fold.
However, a key difference to the graphene fold is the appear-
ance of a localized mode at the zigzag boundary which has
vanishing energy. The spinor component ψK

A,k,0(y) vanishes
identically, whereas the nonzero spinor component is spa-
tially localized, ψK

B,k,0(y) ∼ exp[−(qB0y − k)2/(2qB0)] [14].
Decomposing the Dirac spinor into eigenmodes which are
labeled by the parallel momentum, the Landau band, and the
Dirac point, we obtain

�̂(r, t ) = 1

2π
√

2

∫
dk
∑
m=0

eikx

[(
0

�
p,K ′
k,m (y)

)
âK ′

m,ke−iEK ′
m,kt +

(
0

�
h,K ′
k,m (y)

)
b̂†K ′

m,ke+iEK ′
m,kt

]
+ 1

2π
√

2

∫
dk
∑
m>0

eikx

×
[(

�
p,K
k,m (y)

0

)
âK

m,ke−iEK
m,kt +

(
�

h,K
k,m (y)

0

)
b̂†K

m,ke+iEK
m,kt

]
+ 1

2π

∫
dk eikx

(
�K

k,0(y)

0

)
âK

0,k . (23)

The components of �
h,K,K ′
k,m (y) and �

p,K,K ′
k,m (y) can taken to be real [cf. Eqs. (5)]. After some algebra, we obtain, for the

conductance,

σ⊥,‖(y,	) = (qvF )2

4	

∫
dk
∫

dy′
∞∑

l=1

{ ∞∑
m=1

δ
(
	 − EK

m,k − EK
l,k

)
ψK

A,k,l (y
′)ψK

B,k,m(y′)
[
ψK

A,k,l (y)ψK
B,k,m(y) + λ⊥,‖ψK

A,k,m(y)ψK
B,k,l (y)

]

+ δ
(
	 − EK

l,k

)
ψK

A,k,l (y
′)ψK

B,k,0(y′)ψK
A,k,l (y)ψK

B,k,0(y)

}
+ (qvF )2

4	

∫
dk
∫

dy′
∞∑

l,m=0

{
δ
(
	 − EK ′

m,k − EK ′
l,k

)
ψK ′

A,k,l (y
′)

× ψK ′
B,k,m(y′)

[
ψK ′

A,k,l (y)ψK ′
B,k,m(y) + λ⊥,‖ψK ′

A,k,m(y)ψK ′
B,k,l (y)

]}
. (24)
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FIG. 5. Absorption probability into the dispersive edge modes
for the polarizations perpendicular and parallel to the zigzag edge.
The curves show the same qualitative behavior as the absorption
probabilities around a graphene fold. The peaks in the vicinity of
x = 0 are mainly due to the presence of the zero-energy mode.

As for the fold geometry [cf. (20)], the conductivity is de-
termined by the generation of electron-hole pairs at K and
K ′. However, for the zigzag boundary, the excitations around
the Dirac points contribute differently to the absorption prob-
ability. The presence of the zero-energy mode at the Dirac
point K permits the absorption of the photon energy into a
single electron or hole excitation; see Eq. (24). The qualitative
behavior of the absorption probabilities g⊥ and g‖ can be
justified as in the graphene fold.

From Figs. 2 and 5, we infer that the maximum absorp-
tion probability into the edge modes does not exceed the
absorption of monolayer graphene, g0 = παQED. Altogether,
we conclude that the large current observed in [15] cannot be
traced back to an enhanced absorption. As a possible expla-
nation for this effect, we shall consider estimates for charge
carrier multiplication rates due to impact ionization.

C. Oscillations of the conductivity

In Figs. 2 and 5, we see that g⊥ shows characteristic oscil-
lations, whereas there are only small periodic modulations of
g‖ in Fig. 5. This can be understood directly from the mode
decompositions (20) and (24), which schematically have the
form

g⊥(y) =
∑

K

∑
l,m

∫
dk αK

l,m(k)

× [ψK
A,k,l (y)ψK

B,k,m(y) + ψK
A,k,m(y)ψK

B,k,l (y)
]

(25)

and

g‖(y) =
∑

K

∑
l,m

∫
dk βK

l,m(k)

× [ψK
A,k,l (y)ψK

B,k,m(y) − ψK
A,k,m(y)ψK

B,k,l (y)
]
. (26)

The coefficients αK
l,m(k) and βK

l,m(k) contain overlap inte-
grals which become rather small unless l ∼ m. From this and
the energy conservation, EK

m,k + EK
l,k = 	, we conclude that

the dominant contributions originate from electron and hole
excitations with energies EK

m,k ≈ 	/2. Evaluating the wave

functions within Wigner-Kramers-Brillouin (WKB) approx-
imation, we find that

ψK
A,k,l (y)ψK

B,k,m(y) + ψK
A,k,m(y)ψK

B,k,l (y)

∼ sin

⎛
⎝2
∫ y

0
dy′
√

	2

(2vF )2
− Vk (y′)

⎞
⎠, (27)

where Vk (y) is the effective potential which was explicitly
given for the graphene fold below relation (11). For the zigzag
boundary, the effective potentials for both Dirac points can
be read off from the eigenvalue equations (21) and (22). We
deduce that oscillations of g⊥ have a periodicity ∼vF /	 with
small spatial variations due to the effective potentials. The
total perpendicular absorption g⊥ contains a sum of functions
which are of the form (27) with different values of k. Since
the potentials Vk (y) vary with transversal momentum k, the
sum involves a superposition of oscillations with different
periodicity. This explains the beating effect, which is rather
apparent in Fig. 5.

In contrast, employing the WKB approximation for the
mode decomposition of g‖ leads to

ψK
A,k,l (y)ψK

B,k,m(y) − ψK
A,k,m(y)ψK

B,k,l (y)

∼ sin

⎛
⎜⎝	

2

∫ y

0
dy′ EK

l,k − EK
m,k√

	2

(2vF )2 − Vk (y′)

⎞
⎟⎠. (28)

These spatial oscillations have much larger periodicities,
∼vF /(EK

l,k − EK
m,k ), which explains the rather smooth increase

of g‖ towards the graphene edge. The tiny oscillations of g‖ in
Fig. 5 originate from higher-order WKB corrections.

IV. SECONDARY ELECTRON-HOLE PAIR CREATION

Auger processes have been thoroughly studied for trans-
lationally invariant graphene sheets [43–46]. There the
energy-momentum conservation together with the linear dis-
persion relation restricts the phase space for interactions to
one dimension, i.e., only collinear processes are allowed [43].
In contrast, a graphene edge breaks the translational invari-
ance and opens up a finite phase-space volume for carrier
multiplication.

Our analysis will reside on the bare Coulomb Hamiltonian,

ĤCoulomb = q2

2

∫
d2r
∫

d2r′ �̂(r)�̂(r′)
4πε0|r − r′| , (29)

where the electron densities can be written in terms of the
Dirac fields as

�̂(r) =
∑

σ

{[
�̂K

σ (r)
]†

�̂K
σ (r) + [�̂K ′

σ (r)
]†

�̂K ′
σ (r)

}
. (30)

Here we employed the expressions (3) and (4) and neglected
rapidly oscillating interference terms of the two Dirac points,
∼ei(K−K′ )·r. The label σ denotes the spin degree of freedom
which was suppressed in the previous sections.

We emphasize that our study is solely based on Fermi’s
golden rule and our analysis for carrier multiplication around
the graphene edge shall give only a rough order-of-magnitude
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estimate for the charge carrier multiplication rates. The ef-
fective fine-structure constant in graphene, αgraphene, is much
larger than αQED due to a relative factor c/vF ≈ 300. This can
be understood intuitively from the fact that the Fermi velocity
is much slower than the speed of light and thus the charge
carriers have more time to interact. Although the effective
fine-structure constant will be diminished somewhat due to
electronic screening, we shall neglect this in our approach
since this effect is rather weak at the Dirac points [47,48]. If
the graphene layer is immersed in a dielectric-media effective
dielectric constant ε̄, the effective fine-structure constant of
the Coulomb interaction will change according to αgraphene →
αgraphene/ε̄ [49,50]. This reduces the effective expansion pa-
rameter and improves the accuracy of our first-order approach.
As a consequence, the calculated scattering rates for the Auger
processes would be diminished by a factor 1/ε̄2.

Another aspect of secondary effects in graphene is the cou-
pling of electrons and holes to phononic excitations [51–53].
However, as the dimensionless electron-phonon coupling is at
least an order of magnitude smaller than the direct electron-
electron interaction (see, for example, [51]), we shall neglect
it in the following. Nevertheless, we would like to note that
the electron-phonon coupling can be enhanced if the phonons
are brought into resonance with inter-Landau-level transitions
[54,55].

We consider Auger-type inelastic scattering of an incom-
ing electron, |in〉 = |kin, nin〉, to an outgoing electron, |out〉
= |kout, nout〉, while creating an electron-hole pair |el, hole〉
= |kel, nel, khole, nhole〉. Using standard first-order perturbation
theory, we find, for the transition matrix elements,

M(in → out, el, hole) = −i
∫

dt〈out, el, hole|ĤCoulomb|in〉.
(31)

Summing the absolute square of (31) over all final states gives
the leading-order result for the impact ionization rate. If we
assume that the momentum of the incoming electron is in the
vicinity of the Dirac point K and the secondary electron-hole
pair is generated around K ′, the probability per unit time reads

PK,σ→K ′,λ

T
= vF α2

graphene

8π

∫
dkoutHK,σ→K ′,λ(kout ). (32)

The integrand

HK,σ→K ′,λ(kout ) = vF∣∣ dF
dkel

∣∣ |IK,σ→K ′,λ|2|F=0 (33)

is determined by an overlap integral specifying the Coulomb
interaction between the charge densities,

IK,σ→K ′,λ =
∫

dx
∫

dx′[�p,K ′
kel,nel

(x)
]†

�
h,K ′
khole,nhole

(x)

× K0(|kin − kout|D(x, x′))
[
�

p,K
kout,nout

(x′)
]†

× �
p,K
kin,nin

(x′), (34)

and the weight factor dF/dkel; see below. The Coulomb in-
teraction is encoded in the Bessel function K0, which arises
after the integration over the momentum component parallel
to the edge. Its argument contains the momentum differ-
ence between the incoming and outgoing electron and the

function D(x, x′) that measures the distance of the charge
densities perpendicular to the fold. Two variables can be elim-
inated using the momentum conservation, kin − kout = kel −
khole, and the energy conservation, F = Enin,kin − Enout,kout −
Enel,kel − Enhole,khole ≡ 0. The weight factor dF/dkel in (33) en-
sures the local reparametrization invariance of the integral.
The reparametrization invariance for the whole integration
domain does not exist, in general, since dkout/dkel can be-
come singular. Nevertheless, it is always possible to find a
parametrization for H which governs the complete integration
domain.

The matrix elements for impact ionization in the same
Dirac valley but opposite spin are analogous to (32). In
contrast, when the spin and the valley index are the same,
the outgoing electron is indistinguishable from the gener-
ated electron. Therefore, the probability PK,σ→K,σ is now
determined by overlap integrals which satisfy an exchange
symmetry,

IK,σ→K,σ =
∫

dx
∫

dx′[�p,K
kel,nel

(x)
]†

�
h,K
khole,nhole

(x)

× K0[|kin − kout|D(x, x′)]
[
�

p,K
kout,nout

(x′)
]†

× �
p,K
kin,nin

(x′) − (kout, nout ↔ kel, nel ). (35)

Before we discuss the specific settings of a graphene fold
and a zigzag boundary, two remarks are in order. First, the
leading-order perturbation theory may not be very accu-
rate since the dimensionless expansion parameter is larger
than unity, αgraphene = αQEDc/vF ≈ 2.2. Second, we will not
consider Auger recombination and assume that the gener-
ated charge carriers reach the bond contacts of the graphene
boundary before electron-hole annihilation occurs. Electron-
hole annihilation can, in principle, be considered within a
Boltzmann-equation approach [43]. However, we expect the
recombination rates to be negligible for sufficiently small
electron-hole densities; see, also [56].

A. Graphene fold

A graphene fold breaks translation invariance without ter-
minating the graphene sheet. As in Sec. III A, we assume the
magnetic length �B and the fold radius R to be equal. The
spatial separation D(x, x′) of the charge carrier densities can
be deduced by simple geometric considerations from Fig. 6.

An exact selection rule occurs due to the pseudoparity,
which was briefly discussed in Sec. III A. As a consequence,
the integrals IK,σ→K,λ and IK,σ→K ′,λ vanish identically unless
the sum of the Landau-level indices, nin + nout + nel + nhole,
equals an odd integer. From the allowed transitions, only a
few decay channels dominate the process, whereas most of the
channels will be suppressed by several orders of magnitude.
If the number of nodes of the wave functions �

p,K
kin,nin

and

�
p,K
kout,nout

are very different from each other, the wave functions
are nearly orthogonal, which renders the overlap integral (34)
exponentially small. The same is true for �

p,K ′
kel,nel

and �
p,K ′
khole,nhole

.
Therefore, the decay channels between the Dirac points K and
K ′ can usually be neglected unless nel ∼ nhole and nin ∼ nout.

Furthermore, a strong oscillation of the integrands will ren-
der the overlap integrals exponentially small. In order to keep
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FIG. 6. Sketch of the graphene fold in an external magnetic
field. Secondary electron-hole pairs are generated via the Coulomb
interaction.

the total number of nodes of the integrand in Eq. (34) as small
as possible, we can conclude that for an incoming electron
at Landau level nin, the following approximate selection rule
applies:

nout ∈ {nin, nin ± 1} and nel ∼ nhole ∼ 1. (36)

For transitions within the same Dirac point, we also obtain
relevant contributions for nout ∼ nhole 
 nin ∼ nel, a direct
consequence of the exchange symmetry; see Eq. (35).

We illustrate our findings and consider the decay process
of an incoming electron with nin = 5 and kin = 10/�B0 . For a
magnetic field of B0 = 5T , this would correspond to an initial
energy of Enin,kin = 0.7 eV. For transitions involving states of
both Dirac points, we list the rates for various decay channels
in Table I. Although the applicability of first-order perturba-
tion theory should be doubted and not every generated charge
carrier will contribute to the overall current (see below), we
see from Table I that each of the largest decay channels
generates between 80 and 90 electron-hole pairs within one
picosecond, which is about 10 electron-hole pairs within the
distance of a classical cyclotron radius.

Figure 7 shows the magnitude of the integrals which de-
termine the decay channels, PK,σ→K ′,λ(nin → nout, nel, nhole ).
Transitions which do not fulfill the relation (36) are strongly
suppressed.

For transitions in the vicinity of one Dirac point, we list
the dominating integrals in Table II. Here, all rates come in
pairs, which is a direct consequence of the exchange sym-

TABLE I. The first two rows specify the largest decay rates for
transitions K → K ′ for an incoming electron with nin = 5 and kin =
10/�B0 . The decay rates in the third and fourth lines are at least one
magnitude smaller since they do not fulfill (36).

nout nel nhole P/T (s−1)

4 1 1 9.4×1013

6 1 1 8.1×1013

1 4 1 1.5×1012

1 6 1 4.5×1011

FIG. 7. Overlap integrals which determine the decay probabil-
ities per unit time. Here we only consider the channels for which
the incoming electron is in the vicinity of the K point and the
outgoing electron-hole pair is generated around the K ′ point. The
corresponding rates for the two largest integrals are listed in Table I.
As can be seen here, the remaining channels are strongly suppressed.

metry of (35), from which follows that PK,σ→K,σ (nout, nel ) =
PK,σ→K,σ (nel, nout ). Comparing the corresponding rates of
Tables I and II, we find PK,σ→K,σ � PK,σ→K ′,σ . This small
suppression in comparison to the K → K ′ rates originates
from destructive interference, which is rather small unless
nout ∼ nel; cf. Eqs. (36) and (35). In Fig. 8, we show the matrix
elements determining the K → K transitions, sorted by size.

Summing over the spin configurations, both Dirac points,
and all final configurations for the outgoing electron and the
generated electron-hole pair, we find for our example the total
impact ionization rate,

Ptotal

T
= 1

T

∑
λ

∑
nI

(
3PK,σ→K ′,λ

nI
+ PK,σ→K,λ

nI

)
≈ 1.4×1015 s−1, (37)

which corresponds to about 180 generated electron-hole pairs
within a distance of one cyclotron radius. Although some of
the secondary electrons and holes are generated in the bulk
and do not contribute to the total current (see below), our esti-
mate shows the efficiency of the charge carrier multiplication.

One of the dominating channels in the pair production
process with transitions K → K is specified by the quantum
numbers nin = 5, nout = 1, nel = 4, and nhole = 1. The corre-
sponding integrand HK,σ→K,σ for this decay channel is shown
in the upper panel of Fig. 9. In the lower panel of Fig. 9, we
see the currents J = dE/dk for the outgoing electron and the
generated electron-hole pair. For kout � −1.5/lB0 , the whole

TABLE II. Decay rates of the dominating channels for an incom-
ing electron with nin = 5 and kin = 10/�B0 . The rates are symmetric
with respect to the interchange of nout and nel.

nout nel nhole P/T (s−1)

4 1 1 8.3×1013

1 4 1 8.3×1013

6 1 1 7.5×1013

1 6 1 7.5×1013
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FIG. 8. Overlap integrals determining the decay probabilities per
unit time in the vicinity of one Dirac point time, sorted by size, on a
logarithmic scale. As a consequence of the exchange symmetry, all
matrix elements occur in pairs.

energy of the incoming electron is transferred to the gener-
ated electron, whereas the generated hole and the outgoing
electron are bulk modes with zero energy. In contrast, for
kout � −1.5/lB0 , the outgoing electron and the generated hole
are located in the vicinity of the boundary and additional
current is generated.

In our example, the function HK,σ→K,σ has its maximum
around kout�B0 ∼ −1. In general, the position of this max-
imum determines the contribution of the generated charge
carriers to the overall current. To clarify this statement, we
consider a transition with nel = nin − 1 and �B0 kin 
 1 and
nout = nhole = 1. The Coulomb integral (34) is exponentially
suppressed unless �B0 (kin − kel ) � 1. Together with (14) and
the energy conservation, we infer that the energies of the

FIG. 9. Upper panel: Value of HK,σ→K,σ as a function of kout .
Lower panel: Currents related to the outgoing electron and the gener-
ated electron-hole pair. The cusps in the plots around kout = −1.5/lB0

originate from the slope of the lowest-energy band in our model;
cf. Fig. 1.

outgoing electron and the generated hole are small,

(Enout,kout + Enhole,khole ) = vF

�B0

O{�B0 (kin − kel ), 1/
√

�B0 kin}.
(38)

Thus, the outgoing electron and the generated hole will be ei-
ther zero-energy modes of the form (15) or low-energy modes
at the boundary; see Eq. (19).

If nin ∼ 1 and �B0 kin 
 1, we know from (13) that
�

p,K
kin,nin

and �
p,K
kel,nel

are located around the edge and therefore
HK,σ→K,σ will adopt its maximum value at |kout|�B0 � 1 if the
wave functions �

p,K
kout,nout

and �
h,K
khole,nhole

are both dispersive edge
modes of the form (19). In contrast, for nin 
 1, the greatest
weight of the wave functions, �

p,K
kin,nin

and �
p,K
kel,nel

, are close to
the classical turning points inside the bulk,

|xturn|
�B0

≈
√

2nin

(�B0 kin )1/4 . (39)

Here, HK,σ→K,σ adopts its maximum value if the outgoing
electron and the generated hole are bulk modes. The position
of the maximum of HK,σ→K,σ can be estimated from (15) and
(39) to be at �B0 kout ≈ −√

2nin/(�B0 kin )1/4.
As the bulk modes do not contribute to the total current,

we conclude that initial states with small nin are beneficial for
the current enhancement. For these dispersive edge modes, we
have nin/kin�B0 � 1, which corresponds to charge excitations
traveling nearly parallel to the fold. In contrast, for large nin,
only the final states which are inside the tail of HK→K at
|�B0 kout| � 1 are relevant for the generated current.

In order to quantify our statement, we calculated the ex-
pectation value of the sum of all currents Jk = dE/dk, i.e.,

CK,σ→K,σ

T

= α2
graphene

8π

∫
dkout (Jkout + Jkel + Jkhole − Jkin )HK,σ→K,σ .

(40)

This quantity characterizes the number of charge carriers per
unit time which contribute to the edge current. From Fig. 10,
we conclude that although the number of generated charge
carriers grows with increasing nin, the generation of edge
modes adopts its maximum value at small values of nin. Going
back to our initial example, we find, after summing over all
final states, Ctotal/T ≈ 7.8×1014 s−1. Comparing with (37),
we conclude that only every fourth generated charge carrier
will contribute to the edge current.

B. Zigzag boundary

The carrier multiplication process is a rather robust effect
and we expect that the main characteristics of the decay pro-
cess also hold for a graphene sheet with zigzag boundary.

Again we find that the overlap integrals IK,σ→K,λ and
IK,σ→K ′,λ are strongly suppressed unless the approximate se-
lection rule (36) applies. As for the fold geometry, the charge
carrier multiplication is dominated by a few channels.

We took the same parameter choice as for the graphene
fold. The dominant transitions K → K contain a zero-
energy mode ψK

0,k , with one vanishing spinor component;
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FIG. 10. We consider the decay channels from an incoming
electron at Landau band nin with an initial energy Enin,kin = 0.7 eV
to the outgoing states which are specified by nin → nout = nin − 1
and nel = nhole = 1. The blue dots denote the generation rates for
electron-hole pairs, whereas the red squares are the corresponding
rates for additionally generated charge carriers which contribute to
the edge current.

see Eq. (23). The presence of this nondispersive enlarges the
phase space for these channels since momentum conservation
can always be satisfied. In Fig. 11, we show the probabilities
per unit time, PK,σ→K,σ ′

/T , for the processes involving the
zero-energy mode and nin = nout as well as nhole = 1. For
increasing nin, the weight of the corresponding wave func-
tion is moving inside the bulk, which diminishes the overlap
with the electron-hole modes at the boundary. As before, this
implies that small values of nin are beneficial for the current
enhancement.

We also found rather large rates for transitions between
both graphene valleys, K → K ′. Matrix elements with nout =
nin − 1 and nel = nhole = 0 are presented in the upper panel
of Fig. 12 and are of similar magnitude as the rates in the
graphene fold; cf. Fig. 10. The largest contribution to the
impact ionization originates from transitions with the quan-
tum numbers nin = nout = 1 and nel = nhole = 0; see the lower
panel of Fig. 12. Note that these transitions are absent in the
graphene fold due to the pseudoparity selection rule.

FIG. 11. Transitions within the Dirac point K are dominated by
channels that contain the zero-energy mode.

FIG. 12. Upper panel: Rates for the transitions between the two
Dirac points. The quantum numbers for the incoming and outgoing
electron are nin and nout = nin − 1 and the electron-hole pair is gener-
ated in the state with nel = nhole = 0. The magnitude of these rates is
comparable to the results we found in the graphene fold; see Fig. 10.
Lower panel: Rates for channels which are specified by nin = nout and
nel = nhole = 0 are dominating the Auger process for small values
of nin.

V. CONCLUSIONS AND OUTLOOK

We analyzed the primary magneto-optical absorption of
graphene and the subsequent electron-hole generation due to
impact ionization. The bare magneto-photoelectric current, in
particular the absorption into the dispersive edge modes, does
not exceed the well-known value for graphene monolayers.
However, subsequent impact ionization leads to charge car-
rier multiplication and therefore to a strong enhancement of
the photocurrent. We found that charge carrier multiplication
depends on the incident angle between the incoming elec-
tron and graphene edge; small impact angles are particularly
advantageous for current amplification. The presence of a
finite phase-space volume due to the absence of translation
invariance makes this effect rather robust. However, the spe-
cific enhancement will depend on the particular boundary
condition of the graphene edge. The derived exact and ap-
proximate selection rules show that only a small subset of the
decay channels will significantly contribute to the dynamics.
An illustration of the exact and approximate selection rules is
given in Figs. 13 and 14. The use of these results could allow
the efficient implementation of the relaxation dynamics using
a Boltzmann equation approach. Although we expect that the
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FIG. 13. Dominant decay channels in the graphene fold where
the Landau band index of an electron is increased (left panel) or
decreased (right panel) while creating an electron-hole pair. Since the
sum of all Landau band indices of the involved charge carriers has to
be odd, processes with nin = nout and nel = nhole = 1 are forbidden.

qualitative behavior of the charge multiplication can already
be captured within leading-order perturbation theory, a quan-
titative prediction should include higher-order corrections of
the scattering processes.

For our particular example, we found that the rate of
secondary electron-hole creation is of the order of 1014 s−1.
This would correspond to the generation of about 102 charge
carriers within a distance of one micrometer. This value over-
estimates the findings of the experimental findings which
showed a sevenfold increase of the magneto-photoelectric
current [15]. However, as noted above, the leading-order
perturbation theory should be taken with caution since it in-
volves the effective fine-structure constant of graphene, which
is not a small parameter. Also, possible recombination pro-
cesses of electron-hole pairs have not been considered in our

FIG. 14. Dominant decay channels at a zigzag edge. Although
no exact selection rules exist, the dominating channels fulfill the
condition (36). Left panel: Auger process at the K point in which
the zero-energy mode ensures the momentum conservation. Right
panel: Auger process where an electronic excitation near the K point
generates an electron-hole pair at the K ′ point. Energies around the
K (K ′) point are indicated by solid (dotted) lines.

calculations. Altogether, the experimental setup will not be
captured in total within our idealized description. Neverthe-
less, our results are qualitatively consistent with the exper-
iment and show that Auger processes are viable to account
for the strong amplification of the magneto-photoelectric re-
sponse.
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